User:Hans G. Oberlack/Sandkiste: Difference between revisions

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Content deleted Content added
No edit summary
Line 22: Line 22:
2) Area of the inscribed triangle: <math>A_2= \frac{a_2^2}{2} =\frac{1}{2} \left(\frac{2\sqrt\pi}{\sqrt\pi+\sqrt2+1}\right)^2 \cdot a_0^2 \quad \approx 0.358 \cdot a_0^2 \quad</math><br>
2) Area of the inscribed triangle: <math>A_2= \frac{a_2^2}{2} =\frac{1}{2} \left(\frac{2\sqrt\pi}{\sqrt\pi+\sqrt2+1}\right)^2 \cdot a_0^2 \quad \approx 0.358 \cdot a_0^2 \quad</math><br>


<!--


=== Centroids in the general case ===
=== Centroids in the general case ===
Line 28: Line 27:
==== Centroids as graphically displayed ====
==== Centroids as graphically displayed ====
0) Centroid position of the base square: <math>S_0=0+0i=0</math><br>
0) Centroid position of the base square: <math>S_0=0+0i=0</math><br>
1) Centroid position of the inscribed circle: <math>S_1=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi} -\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (0.213+0.213i) \cdot a_0 \quad</math>, see Calculation 4<br>
1) Centroid position of the inscribed circle: <math>S_1=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi} -\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (0.213+0.213i) \cdot a_0 \quad</math>, see Calculation <br>
2) Centroid position of the inscribed square: <math>S_2=\frac{1}{2} \cdot \left(-\frac{\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (-0.245-0.245i) \cdot a_0\quad</math>, see calculation 5<br>
2) Centroid position of the inscribed square: <math>S_2=\frac{1}{2} \cdot \left(-\frac{\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (-0.245-0.245i) \cdot a_0\quad</math>, see calculation 5<br>

-->
<!--


==== Orientated centroids ====
==== Orientated centroids ====
The centroid positions of the following shapes will be expressed orientated so that the first shape n with <math>S_n \neq S_0</math> will be of type <math>S_n=0-ki</math> with <math>k > 0</math>. The graphical representation does not correspond to the mathematical expression.<br>
The centroid positions of the following shapes will be expressed orientated so that the first shape n with <math>S_n \neq S_0</math> will be of type <math>S_n=0-ki</math> with <math>k > 0</math>. The graphical representation does not correspond to the mathematical expression.<br>
0) Orientated centroid position of the base square: <math>S_0=0+0i=0</math><br>
0) Orientated centroid position of the base square: <math>S_0=0+0i=0</math><br>
1) Orientated centroid position of the inscribed circle: <math>S_1=\left(0- \frac{\sqrt{2\pi} -\sqrt2 +1}{ 2\sqrt\pi +2+\sqrt2} \cdot i \right) \cdot a_0 \quad \approx (0-0.3i) \cdot a_0 \quad</math>, see calculation 2<br>
1) Orientated centroid position of the inscribed circle: <math>S_1=\left(0- \frac{\sqrt{\pi} -\sqrt2}{\sqrt\pi++\sqrt2} \cdot i \right)\cdot a_0 \quad \approx (0-0.) \cdot a_0</math>, see calculation 2<br>
<!--

2) Orientated centroid position of the inscribed square: <math>S_2=\left(0+ \frac{\sqrt2+1}{2\sqrt\pi+2+\sqrt2} \cdot i \right) \cdot a_0 \quad \approx (0+0.347i) \cdot a_0 \quad</math>, see calculation 3<br>
2) Orientated centroid position of the inscribed square: <math>S_2=\left(0+ \frac{\sqrt2+1}{2\sqrt\pi+2+\sqrt2} \cdot i \right) \cdot a_0 \quad \approx (0+0.347i) \cdot a_0 \quad</math>, see calculation 3<br>


Line 108: Line 112:
<math>\quad \Leftrightarrow a_2 =\frac{2\sqrt\pi}{\sqrt\pi +\sqrt2 +1} \cdot a_0 \quad \approx 0.847 \cdot a_0</math>, rearranging<br>
<math>\quad \Leftrightarrow a_2 =\frac{2\sqrt\pi}{\sqrt\pi +\sqrt2 +1} \cdot a_0 \quad \approx 0.847 \cdot a_0</math>, rearranging<br>


<!--
=== Calculation 2 ===
=== Calculation 2 ===
Calculating the centroid of the inscribed circle as displayed:<br>
<math> S_1=S_0+\overrightarrow{S_0S_1}</math><br>
<math>\quad \Leftrightarrow S_1=(0+0i)+\overrightarrow{S_0C}+\overrightarrow{CS_1} </math><br>
<math>\quad \Leftrightarrow S_1=\left(|S_0C| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, since <math>\overrightarrow{S_0C}</math> is collinear to the diagonal of the square<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt2 \cdot a_0}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, since <math>\overrightarrow{S_0C}</math> is half the diagonal of the square<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(|S_1C| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(\sqrt2 \cdot r_1 \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{S_1C}</math> is the diagonal of the square <math>\square{S_1FCG} </math> with side length <math>r_1</math> <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(r_1 \cdot (1+i) \right)\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1= \left(\frac{a_0}{2} - r_1 \right) \cdot (1+i)\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{a_0}{2}- \frac{\sqrt2}{\sqrt{\pi} +\sqrt2 +1} \cdot a_0 \right) \cdot (1+i)\quad</math>, applying Calculation 1b <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{1}{2}- \frac{\sqrt2}{\sqrt{\pi} +\sqrt2 +1} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt{\pi} +\sqrt2 +1}{2(\sqrt{\pi} +\sqrt2 +1)}- \frac{2\sqrt2}{2(\sqrt{\pi} +\sqrt2 +1)} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt{\pi} -\sqrt2 +1}{2(\sqrt{\pi} +\sqrt2 +1)} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\frac{1}{2} \cdot \left(\frac{\sqrt{\pi} -\sqrt2 +1}{\sqrt{\pi} +\sqrt2 +1} \right) \cdot (1+i)\cdot a_0\quad \approx (0.162+0.162i) \cdot a_0</math>, rearranging <br>
-->

=== Calculation ===
Calculating the as displayed:<br>
<math> S_2=S_0+\overrightarrow{S_0S_2}</math><br>
<math>\quad \Leftrightarrow S_2=(0+0i)+\overrightarrow{S_0A}+\overrightarrow{AS_2} </math><br>
<math>\quad \Leftrightarrow S_2=(0+0i)-\overrightarrow{AS_0}+\overrightarrow{AS_2} </math><br>

<math>\quad \Leftrightarrow S_2=\left(-|S_0A| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, since <math>\overrightarrow{S_0A}</math> is collinear to the diagonal of the square <math>\square{ABCD} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{\sqrt2 \cdot a_0}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, since <math>\overrightarrow{S_0A}</math> is half the diagonal of the square <math>\square{ABCD} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(|AS_2| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{AS_2}</math> is collinear to the diagonal of the square <math>\square{AKEH} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(\frac{\sqrt2 \cdot a_2}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{AS_2}</math> is half the diagonal of the square <math>\square{AKEH} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(\frac{a_2}{2} \cdot (1+i) \right)\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot (a_2-a_0) \cdot (1+i) \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}}{\sqrt{2\pi} +\sqrt2 +1} \cdot a_0-a_0 \right) \cdot (1+i) \quad</math>, applying calculation 1c<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}}{\sqrt{2\pi} +\sqrt2 +1} -1 \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}-(\sqrt{2\pi} +\sqrt2 +1)}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}-\sqrt{2\pi} -\sqrt2 -1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{-\sqrt2 -1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(-\frac{\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (-0.245-0.245i) \cdot a_0\quad</math>, rearranging<br>


=== Calculation ===
The centroid of the inscribed circle is calculated in orientated expression:<br>
The centroid of the inscribed circle is calculated in orientated expression:<br>
<math>S_1=S_0+\overrightarrow{S_0C}+\overleftarrow{CS_1} </math><br>
<math>S_1=S_0+\overrightarrow{S_0C}+\overleftarrow{CS_1} </math><br>
Line 127: Line 171:
<math>\quad \Leftrightarrow S_1=0-\frac{\sqrt2}{2}\cdot \left(\frac{\sqrt{\pi}+1 -\sqrt2}{\sqrt{\pi}+1 +\sqrt2} \right) \cdot i \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1=0-\frac{\sqrt2}{2}\cdot \left(\frac{\sqrt{\pi}+1 -\sqrt2}{\sqrt{\pi}+1 +\sqrt2} \right) \cdot i \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1= \left(0-\frac{1}{\sqrt2}\cdot \left(\frac{\sqrt{\pi}+1 -\sqrt2}{\sqrt{\pi}+1 +\sqrt2} \right) \cdot i \right)\cdot a_0 \quad \approx (0-0.229i) \cdot a_0</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1= \left(0-\frac{1}{\sqrt2}\cdot \left(\frac{\sqrt{\pi}+1 -\sqrt2}{\sqrt{\pi}+1 +\sqrt2} \right) \cdot i \right)\cdot a_0 \quad \approx (0-0.229i) \cdot a_0</math>, rearranging<br>

<!--






<!--
<!--
=== Calculation 3 ===
=== Calculation ===
The centroid of the inscribed square is calculated in orientated expression:<br>
The centroid of the inscribed square is calculated in orientated expression:<br>
<math>S_2=S_0+\overrightarrow{S_0A}+\overrightarrow{AS_2} </math><br>
<math>S_2=S_0+\overrightarrow{S_0A}+\overrightarrow{AS_2} </math><br>
Line 154: Line 196:
<math>\quad \Leftrightarrow S_2=(0+ \frac{\sqrt2+1}{2\sqrt\pi+2+\sqrt2} \cdot i ) \cdot a_0 \quad \approx (0+0.347i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=(0+ \frac{\sqrt2+1}{2\sqrt\pi+2+\sqrt2} \cdot i ) \cdot a_0 \quad \approx (0+0.347i) \cdot a_0 \quad</math>, rearranging<br>


-->
=== Calculation 4 ===
Calculating the centroid of the inscribed circle as displayed:<br>
<math> S_1=S_0+\overrightarrow{S_0S_1}</math><br>
<math>\quad \Leftrightarrow S_1=(0+0i)+\overrightarrow{S_0C}+\overrightarrow{CS_1} </math><br>
<math>\quad \Leftrightarrow S_1=\left(|S_0C| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, since <math>\overrightarrow{S_0C}</math> is collinear to the diagonal of the square<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt2 \cdot a_0}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, since <math>\overrightarrow{S_0C}</math> is half the diagonal of the square<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)+\overrightarrow{CS_1}\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(|S_1C| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(\sqrt2 \cdot r_1 \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{S_1C}</math> is the diagonal of the square <math>\square{S_1FCG} </math> with side length <math>r_1</math> <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{ a_0}{2} \cdot (1+i) \right)-\left(r_1 \cdot (1+i) \right)\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1= \left(\frac{a_0}{2} - r_1 \right) \cdot (1+i)\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{a_0}{2}- \frac{\sqrt2}{\sqrt{\pi} +\sqrt2 +1} \cdot a_0 \right) \cdot (1+i)\quad</math>, applying Calculation 1b <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{1}{2}- \frac{\sqrt2}{\sqrt{\pi} +\sqrt2 +1} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt{\pi} +\sqrt2 +1}{2(\sqrt{\pi} +\sqrt2 +1)}- \frac{2\sqrt2}{2(\sqrt{\pi} +\sqrt2 +1)} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\left(\frac{\sqrt{\pi} -\sqrt2 +1}{2(\sqrt{\pi} +\sqrt2 +1)} \right) \cdot (1+i)\cdot a_0\quad</math>, rearranging <br>
<math>\quad \Leftrightarrow S_1=\frac{1}{2} \cdot \left(\frac{\sqrt{\pi} -\sqrt2 +1}{\sqrt{\pi} +\sqrt2 +1} \right) \cdot (1+i)\cdot a_0\quad \approx (0.162+0.162i) \cdot a_0</math>, rearranging <br>







=== Calculation 5 ===
Calculating the centroids as displayed:<br>
<math> S_2=S_0+\overrightarrow{S_0S_2}</math><br>
<math>\quad \Leftrightarrow S_2=(0+0i)+\overrightarrow{S_0A}+\overrightarrow{AS_2} </math><br>
<math>\quad \Leftrightarrow S_2=(0+0i)-\overrightarrow{AS_0}+\overrightarrow{AS_2} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-|S_0A| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, since <math>\overrightarrow{S_0A}</math> is collinear to the diagonal of the square <math>\square{ABCD} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{\sqrt2 \cdot a_0}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, since <math>\overrightarrow{S_0A}</math> is half the diagonal of the square <math>\square{ABCD} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\overrightarrow{AS_2}\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(|AS_2| \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{AS_2}</math> is collinear to the diagonal of the square <math>\square{AKEH} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(\frac{\sqrt2 \cdot a_2}{2} \cdot \frac{1}{\sqrt2} \cdot (1+i) \right)\quad</math>, since <math>\overrightarrow{AS_2}</math> is half the diagonal of the square <math>\square{AKEH} </math><br>
<math>\quad \Leftrightarrow S_2=\left(-\frac{ a_0}{2} \cdot (1+i) \right)+\left(\frac{a_2}{2} \cdot (1+i) \right)\quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot (a_2-a_0) \cdot (1+i) \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}}{\sqrt{2\pi} +\sqrt2 +1} \cdot a_0-a_0 \right) \cdot (1+i) \quad</math>, applying calculation 1c<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}}{\sqrt{2\pi} +\sqrt2 +1} -1 \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}-(\sqrt{2\pi} +\sqrt2 +1)}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{\sqrt{2\pi}-\sqrt{2\pi} -\sqrt2 -1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(\frac{-\sqrt2 -1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad</math>, rearranging<br>
<math>\quad \Leftrightarrow S_2=\frac{1}{2} \cdot \left(-\frac{\sqrt2 +1}{\sqrt{2\pi} +\sqrt2 +1} \right) \cdot (1+i) \cdot a_0 \quad \approx (-0.245-0.245i) \cdot a_0\quad</math>, rearranging<br>





Revision as of 19:02, 6 July 2024


Elements

Base is the square of given side length with centroid at
Inscribed are the largest possible circle and right triangle of the same area.

General case

Segments in the general case

0) The side length of the base square:
1) The radius of the inscribed circle: , see Calculation 1
2) The side length of the inscribed right triangle: , see Calculation 1

Perimeters in the general case

0) Perimeter of base square
1) Perimeter of the inscribed circle:
2) Perimeter of the inscribed triangle:

Areas in the general case

0) Area of the base square
1) Area of the inscribed circle:
2) Area of the inscribed triangle:


Centroids in the general case

Centroids as graphically displayed

0) Centroid position of the base square:
1) Centroid position of the inscribed circle: , see Calculation 2
2) Centroid position of the inscribed square: , see calculation 5

-->

Calculations

Equations of given elements and relations

(0) The area of the right triangle has to be the same as the area of the circle with radius around center point
(1) since is a square
(2) since is the diagonal of square
(3) since is a right triangle
(4) since is a square, because and are tangent points of the circle around with the sides of square

Calculation 1

The radius is calculated:

a) First the relation between and is determined from equation (0):
applying equation (0)
, definitions of areas of right triangles and circles
, multiplying both sides by two
, since negative length cannot be applied

b) Then the relation between and is determined from the following identity:
since is a square
, because the three segments are forming the diagonal of the square
, since is a right isosceles trinagle
, applying part a) of the calculation
, rearranging
, rearranging
, because E is a tangent point on the circle and a diagonal side of the triangle
, because is a square with side length
, extracting out of the bracket
, rearranging

c) Eventually the relation between and is determined by using part a) of the calculation:
, from part a) of the calculation
, using the result from part b) of the calculation
, rearranging


Calculation 3

Calculating the centroid of the right triangle as displayed:



, since is collinear to the diagonal of the square
, since is half the diagonal of the square
, rearranging
, since is collinear to the diagonal of the square
, since is half the diagonal of the square
, rearranging
, rearranging
, applying calculation 1c
, rearranging
, rearranging
, rearranging
, rearranging
, rearranging


Calculation 4

The centroid of the inscribed circle is calculated in orientated expression:

, applying definition of
, applying the orientation principle
, rearranging
, since and are collinear
, since is half the diagonal of square
, since is the diagonal of square with side length
, rearranging
, rearranging
, applying result from Calculation 1
, extracting
, rearranging
, rearranging
, rearranging
, rearranging
, rearranging
, rearranging