Jump to content

Electric vehicle

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Gmanstl (talk | contribs) at 23:01, 19 January 2007 (→‎Related Links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A trolley bus, powered by a pair of overhead wires. Similar trolley poles are used singularly on some tram (trolley) cars. Each insulated pole is connected by a nonconductive cord to a self-winding wheel, allowing the slider or wheel on the end of the pole to be positioned on the wire by manipulating the cord.
A streetcar drawing current from a single overhead wire, returning current through the rails and ground
An electric locomotive, taking power through a pantograph
A passenger railroad, taking power through a third rail

An electric vehicle, or EV, is a vehicle with one or more electric motors for propulsion. The motion may be provided either by wheels or propellers driven by rotary motors, or in the case of tracked vehicles, by linear motors.

The energy used to propel the vehicle may be obtained from several sources:

Advantages of electric vehicles

Electric motors are used to drive vehicles because they can be finely controlled, they deliver power efficiently and they are mechanically very simple. Electric motors often achieve 90% conversion efficiency over the full range of speeds and power output and can be precisely controlled. Electric motors can provide high torque while an EV is stopped, unlike internal combustion engines, and do not need gears to match power curves. This removes the need for gearboxes and torque converters. Electric motors also have the ability to convert movement energy back into electricity, through regenerative braking. This can be used to reduce the wear on brake systems and reduce the total energy requirement of a trip.

General Motors EV1

Large-scale electric transport

Most large electric transport systems are powered by stationary sources of electricity that are directly connected to the vehicles through wires. Due to the extra infrastructure and difficulty in handling arbitrary travel, most directly connected vehicles are owned publicly or by large companies. These forms of transportation are covered in more detail in maglev trains, metros, trams, trains and trolleybuses. A hypothetical electric vehicle design is the personal rapid transit, a cross between cars and trains optimised for independent travel.

In most systems the motion is provided by a rotary electric motor. However, some trains unroll their motors to drive directly against a special matched track. These are known as linear motors and are most commonly used in maglev trains which float above the rails through magnetic force. This allows for almost no rolling resistance of the vehicle and no mechanical wear and tear of the train or track. The levitation and the forward motion are independent effects; the forward motive forces still require external power, but Inductrack achieves levitation at low speeds without any.

Chemical-electric power

Chemical energy is a common independent energy source. Chemical energy is converted to electrical energy, which is then regulated and fed to the drive motors. Chemical energy is usually in the form of diesel or petrol (gasoline). The liquid fuels are usually converted into electricity by an electrical generator powered by an internal combustion engine or other heat engine. This approach is known as diesel-electric or gas-hybrid locomotion.

Another common form of chemical to electrical conversion is by electro-chemical devices. These include fuel cells and batteries. By avoiding an intermediate mechanical step, the conversion efficiency is dramatically improved over the chemical-thermal-mechanical-electrical-mechanical process already discussed. This is due to the higher carnot efficiency through directly oxidizing the fuel and by avoiding several unnecessary energy conversions. Furthermore, electro-chemical batteries conversions are easy to reverse, allowing electrical energy to be stored in chemical form.

Despite the higher efficiency, electro-chemical vehicles have been beset by a technical issue which has prevented them from replacing the more cumbersome heat engines: energy storage. Fuel cells are fragile, sensitive to contamination, and require external reactants such as hydrogen. Batteries currently used are either not mass-produced, leading to high per-unit prices, or end up being a significant (25%-50%) portion of the final vehicle mass, in the case of conventional lead-acid technology. Both have lower energy and power density than petroleum fuels. However, recent advances in battery efficiency, capacity, materials, safety, toxicity and durability are likely to allow their superior characteristics to be widely applied in car-sized EVs,

For especially large electric vehicles, such as submarines and aircraft carriers, the chemical energy of the diesel-electric can be replaced by a nuclear reactor. The nuclear reactor usually provides heat, which drives a steam turbine, which drives a generator, which is then fed to the propulsion.

Electric cars

File:DynastyEVSedan.jpg
Dynasty EV, 4 door sedan neighborhood electric vehicle (NEV) [1]

There are two commonly available electric vehicle designs for automobiles: Battery Electric Vehicles or BEVs, which convert chemical energy to electrical energy in batteries; and Hybrid vehicles, which convert chemical energy to electrical energy via an internal combustion engine and a generator. A third, less established form, is the 'plug-in hybrid' which attempts to combine the benefits of both these designs. It allows the moderate capacity batteries of a hybrid vehicle to be recharged not only from the internal combustion engine and generator, but alternatively from an external source of electricity (such as a domestic electricity supply).

Light EVs include electric wheelchairs, the Segway HT, electric motorcycles and scooters, motorized bicycles, golf carts and neighborhood electric vehicles. Working electric vehicles include heavy work equipment, fork lifts, and numerous other service and support vehicles. Strictly technology-proving experimental or solar powered vehicles include sun racers, electrathons, the aerial Helios Prototype, and some rocket propulsion systems such as the ion thruster.

According to the (US) Electric Auto Association, as many as ten thousand full-sized electric cars were in use in American roads in 1996. Most are converted to electric propulsion by owners or small shops; six major automakers built about five thousand full-sized EVs for US drivers in the 1990s. Almost all now have been repossessed and crushed by their makers (see "Who Killed the Electric Car?" a documentary film about the General Motors EV1). A few hundred major-maker EVs survive, mostly Toyota RAV4 EVs and Ford Ranger EVs.

Recently, a startup company, Tesla Motors has begun EV production. In a few months Tesla has sold hundreds of its high-performance Roadsters; they are powered by Lithium-Ion battery packs (LION) similar to, but larger than, those found in laptop computers. The Tesla Roadster can accelerate from 0-60mph in 4 seconds and has a range of 250 miles.

History

File:Ed d22m.jpg
Edison and an electric car, 1913 (courtesy of the National Museum of American History)

Electric motive power started with a small railway operated by a miniature electric motor, built by Thomas Davenport in 1835. In 1838, a Scotsman named Robert Davidson built an electric locomotive that attained a speed of four miles an hour. In England a patent was granted in 1840 for the use of rails as conductors of electric current, and similar American patents were issued to Lilley and Colten in 1847. [3]

Between 1832 and 1839 (the exact year is uncertain), Robert Anderson of Scotland invented the first crude electric carriage, powered by non-rechargable Primary cells. [4]

By the 20th century, electric cars and rail transport were commonplace, with commercial electric automobiles having the majority of the market. Electrified trains were used for coal transport as the motors did not use precious oxygen in the mines. Switzerland's lack of natural fossil resources forced the rapid electrification of their rail network.

Electric vehicles were among the earliest automobiles, and before the preeminence of light, powerful internal combustion engines, electric automobiles held many vehicle land speed and distance records in the early 1900s. They were produced by Anthony Electric, Baker Electric, Detroit Electric, and others and at one point in history out-sold gasoline-powered vehicles.

In the early 20th century, National City Lines, which was a partnership of General Motors, Firestone, and Standard Oil of California purchased many electric tram networks across the country to dismantle them and replace them with GM buses. The partnership was convicted for this conspiracy, but the ruling was overturned in a higher court.

File:Evcrushed.jpg
EV1s crushed by General Motors only 5 years after production

From 1996 to 1998 during emissions reductions regulations GM produced 1117 of their EV1 models, 800 of which were made available through 3-year leases. In 2003, upon the expiration of EV1 leases, GM crushed them. The reason for the crushing is not clear, but has variously been attributed to (1) the auto industry's successful challenge to California law requiring zero emission vehicles or (2) a federal regulation requiring GM to produce and maintain spare parts for the few thousands EV1s or (3) a conspiracy to remove the dream of electric vehicles from the public consciousness. A web site tracks crushing of other electric vehicles. A movie made on the subject in 2005-2006 was titled Who Killed the Electric Car? and released theatrically by Sony Pictures Classics in 2006. The film explores the roles of automobile manufacturers, oil industry, the US government, batteries, hydrogen vehicles, and consumers, and each of their roles in limiting the deployment and adoption of this technology.

Since 1994 ZAP, a California based company see Zap Motors, has been marketing various electric vehicles with some minor development efforts in electrically assisted bicycles. In 2005 ZAP began selling the Xebra. A 100% electric vehicle manufactured in China that is classified as a motorcycle (not restricted to neighborhood electric vehicle use but also not suitable for general high-speed road driving). The Xebra employs a delta tricycle wheel configuration generally considered unstable for general use owing to a tendency to overturn in extreme use. ZAP claims to purchased 500 Xebras from its China manufacturer to then be sold to its dealer network.

Future

Eliica Battery Electric Car with 370 km/h top speed and 200 km range

The future of electric vehicles until recently seemed unimpressive due to their low driving range and short lifespan of batteries. However, recent technological advances have made electric vehicles more feasible.

File:Tesla roadster real.jpg
The Tesla Roadster
File:Antares20e 1.jpg
Antares 20E[2], an electric self-launching sailplane, flies with a 42 kW DC/DC brushless motor and Li-Ion batteries and can climb up to 3000 m with fully charged cells

Improved long term energy storage

There have been several developments which could bring back electric vehicles outside of their current fields of application, as scooters, golf cars, neighborhood vehicles, in industrial operational yards and indoor operation. First, advances in lithium-based battery technology, in large part driven by the consumer electronics industry, allow full-sized, highway-capable electric vehicles to be propelled as far on a single charge as conventional cars go on a single tank of gasoline. Lithium batteries have been made safe, can be recharged in minutes instead of hours, and now last longer than the typical vehicle. The production cost of these lighter, higher-capacity lithium batteries is gradually decreasing as the technology matures and production volumes increase.

Introduction of Battery Management and Intermediate Storage

Another improvement[5] was to decouple the electric motor from the battery through electronic control while employing ultra-capacitors to buffer large but short power demands and recuperable braking energy. The development of new cell types compared with intelligent cell management improved both weak points mentioned above. The cell management is not only able to monitor the health of the cells but by having a redundant cell configuration (one more cell than needed) and a sophisticated switched wiring it is possible to condition one cell after the other while the rest are on duty.

Range extending energy converters on board

File:New Vehicle Purchase Preference.gif
The number of US survey respondents willing to pay $4,000 more for a plug-in hybrid car increased from 17% in 2005 to 26% in 2006.

Perhaps the most important point is that a monovalent operation (electric only) is no longer the only possibility. Plug-in hybrid electric vehicles can use an engine for longer trips.

The use of fuel cells instead of internal combustion engines can create propulsion systems that are nearly emissions-free (regarding local emissions). However, since the production of hydrogen is energy-inefficient, the net result of hydrogen use in vehicles is increased overall emissions, including CO2, and therefore an increase in the rate of global warming.

Patents

See also

Template:Energy Transportation Template:Sustainability and energy development group