Jump to content

Talk:Transatlantic tunnel

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jaded-view (talk | contribs) at 21:11, 3 December 2009 (→‎Stability of a submerged tube?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconArchitecture Start‑class Low‑importance
WikiProject iconThis article is within the scope of WikiProject Architecture, a collaborative effort to improve the coverage of Architecture on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-importance on the project's importance scale.

For an April 2005 deletion debate over this page see Wikipedia:Votes for deletion/Transatlantic tunnel



This should be merged with Vactrain.

No, but it should link to it. --Golbez 07:22, 24 August 2006 (UTC)[reply]

Stability of a submerged tube?

A text I read regarding ordinary high-speed trains said that the high-speed railways need very high stability because there can't be "bumps" at a high speed. Therefore a suspension bridge is not usable at high speed. If one is neccesary it must be travelled at lower speed. What about travelling submerged tubes at above 1000 mph? Maybe one trains causes the tube to move, which might make it very unpleasant for the next train? --BIL (talk) 20:58, 20 May 2008 (UTC)[reply]

Indeed, such a tunnel or tube is so far beyond current fiscal and engineering capabilities that problems like that seem downright mundane. Presumably such a tube would have integrated mechanisms for active stability, and trains designed specifically to deal with rail movement, rolling of the tunnel due to its weight, change in buoyancy, etc. Or perhaps solving those are so difficult, a magnetically levitated (MagLev) might be justified. —EncMstr (talk) 22:30, 20 May 2008 (UTC)[reply]
Maglev does not solve the problem since the railway is still influenced by a force from the train (Newtons third law). Maglev needs centimeter accuracy for the "railway", and would get serious problems with a submerged tube. If air travel still exists, e.g. year 2200, why is a maglev across the Atlantic justified, having the cost in mind? Isn't air travel better? --BIL (talk) 20:45, 22 July 2008 (UTC)[reply]
As long as the effect is behind the train, who cares? Presumably the next train is an hour or more behind, long enough for the system to stabilize.
I thought the whole point of a high speed (1000+ mph) tube was for it to be in a near-vacuum for energy use advantages.
I remember another flavor of proposal (don't remember where, but it was 15–25 years ago) which would mostly evacuate the tube with the train sealing the cross section. With the train at one end, it compresses the air between the station and the train. As soon as the brakes let go, the air pressure would accelerate the train toward the far end, initially in near-vacuum. As the train approached the other end, the bits of air ahead of it would compress and slow the train to a stop just as it reached the station, with a nearly full vacuum behind where it just came from—almost a perpetual motion machine. Just needs a little energy added to replace the thermal losses magnified by Boyle's law. —EncMstr (talk) 21:00, 22 July 2008 (UTC)[reply]
The whole point of having the train in a near vacuum is three-fold. First you want to save the energy that would be wasted pushing all that air. Second you can go faster in a vacuum than in normal atmosphere due to reduced friction. Finally, if one were to push all that air column at high speed you would get huge vibrations before the train and a fairly large wake behind it. By removing most of the air we considerably reduce the difficulty of the problem, but introduce a new problem: if the tube were deep underwater the pressure coupled with the suction from the near-vacuum would be tremendous. This is why a tube floating somewhere in the water column is more viable: less pressure and less possibility of rupture due to earthquake. Earthquakes are also an important factor since, over the are which the tube would span, one would assume they would happen fairly frequently. All in all the partial vacuum floating tube is the most promising design, yet still a good way away. Ahugenerd (talk) 18:44, 6 August 2008 (UTC)[reply]
Given that 1 atm corresponds to about 10m of water, the pressure difference due to using a vacuum is pretty much irrelevant. More significant is the mechanism to seal the tube at the ends, if the ends are not stations, they need to seal in front and behind a fast moving train. Regarding air travel as better, we still do not have a viable alternative liquid fuel for kerosene jet fuel. It may be impossible to maintain our existing fleet of airplanes as the world supply of crude oil diminishes. (Not to mention that air travel at 3000mph is a long way off) --Jaded-view (talk) 21:11, 3 December 2009 (UTC)[reply]

The main barriers to constructing such a tunnel are cost—as much as $12 trillion[

If one billion people were to take a trip on this thing, the construction costs alone would be $12,000 each, not counting interest. Of course there are operating expenses as well and some profit. I could see a trip costing as much as $50,000 each way.

The biggest reason this won't be built - terrorism. It would be a bigger target than the WTC. —Preceding unsigned comment added by 74.100.48.167 (talk) 17:14, 4 September 2009 (UTC)[reply]

Cost/gain assumptions

The original estimates for the project ranged between 80-175 Billion USD, not in the trillions.

Let's just assume.. (150e9(1+.04)^20)/(2*10*X*1000*365)=20 The above equation assumes the project would cost $150BN, a government loan with 4% interest, 20 years to pay back, trains leave 10 times a day 365 days a year, huge trains carry 1000 passengers and that trains would be running both NY to London and London to NY as there are two tracks. The wholesale price of a ticket would then be $2251 each way. That is actually quite feasible for crossing the the Atlantic in less than an hour. What does a first class ticket run these days? In this example the tunnel is *only* used by a puny 20 thousand passengers per day. How many fly across the Atlantic?

It's pretty likely however that departures would be a lot more frequent. Why wait? With the right automation you could have departures every minute if you really wanted to. The distance between trains would still be roughly 6000km/h*1min=100km! Double the departures means you can half the ticket cost.

The above formula with departures every 10 min results in a wholesale ticket cost of $157. Worth it? Enter the most believable numbers and see what you get!

I realize this is a very rough model which doesn't take upkeep into account. Compared to flying though, upkeep of a vactrain would be close to nill. Which is why airlines and existing magtain makers might lobby to the last breath to prevent this from happening.

In fact, if safety is a concern, you could start with cargo first. This would test automation technologies before human traffic is introduced. No emissions, no friction means overhead per weight would be negligible.

[1]