1/2 + 1/4 + 1/8 + 1/16 + ⋯

La versione stampabile non è più supportata e potrebbe contenere errori di resa. Aggiorna i preferiti del tuo browser e usa semmai la funzione ordinaria di stampa del tuo browser.

In matematica, la serie infinita 1/2 + 1/4 + 1/8 + 1/16 + ⋯ rappresenta un esempio elementare di una serie geometrica che converge assolutamente. La sua somma vale

Dimostrazione

La somma

 

è definibile come

 

per n che tende a infinito. Moltiplicando   per 2 si perviene alla relazione:

 

e sottraendo   da ambo i membri

 

quindi, per n che tende a infinito,   tende a 1.

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica