Solar eclipse of September 10, 1923

A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, September 10, 1923, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality started at the southeastern tip of Shiashkotan in Japan (now in Russia) on September 11, and crossed the Pacific Ocean, southwestern California including the whole Channel Islands, northwestern and northern Mexico, Yucatan Peninsula, British Honduras (today's Belize), Swan Islands, Honduras, and Serranilla Bank and Bajo Nuevo in Colombia on September 10. The eclipse was over 90% in Los Angeles, San Diego, and Santa Barbara on the Southern California coast.

Solar eclipse of September 10, 1923
Map
Type of eclipse
NatureTotal
Gamma0.5149
Magnitude1.043
Maximum eclipse
Duration217 s (3 min 37 s)
Coordinates34°42′N 121°48′W / 34.7°N 121.8°W / 34.7; -121.8
Max. width of band167 km (104 mi)
Times (UTC)
Greatest eclipse20:47:29
References
Saros143 (18 of 72)
Catalog # (SE5000)9335
Photographed from Proto Libertad, Sonora, Mexico

Viewings

edit
 
Howard Russell Butler painting composed in Lompoc, California

At Santa Catalina Island, off the coast of California, a large group of scientists gathered to observe the eclipse were foiled by clouds, with the Los Angeles Times saying that "nothing of the eclipse was seen save two glimpses that showed the crescent of the sun, a sickly, white watermelon rind with the wavering black moon and a few rags of black clouds fast blotting out the white light":[1]

All day the scientists from Yerkes Observatory of the University of Chicago, from the University of Wisconsin, from Dearborn University, from Drake University and Carleton College, had rehearsed and rehearsed to the counting of the seconds and there they stood now while the moon covered the sun and the world was dark and still, and though the counter counted there was no possibility of taking pictures; no chance of seeing anything but that gray, blue, purple shadow moving across the sky.[1]

Even as late as 11:30 when the eclipse began, the scientists had hopes. They had come thousands of miles, had worked hard, had spent much money, all for a few minutes of clear sky. They had worked in the sweltering sun for weeks and weeks 1302 feet above the sea. There had not been one moment of one day that was not flooded with sunshine. "And surely," said Prof. Edwin Frost of the University of Chicago, "surely we will have these few minutes today."[1]

In Bakersfield, where the last eclipse of the Sun had taken place 123 years earlier, many watched the eclipse from streets, chickens were confused, and "all the astronomical apparatus of Bakersfield" was trained on the eclipse.[2] In New York City the eclipse, while partial, was viewed successfully; in the area of totality, it was "studied by astronomers who [were] depending on it to help them test out Einstein's famous theory of relativity and whether light rays are bent by the attraction of gravity".[3]

A team from the University of Arizona took images of the corona in Puerto Libertad, Sonora, Mexico, on the east coast of the Gulf of California.[4] A team from Sproul Observatory observed it in Yerbanís in eastern Durango state, Mexico.[5]

edit

Eclipses in 1923

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 143

edit

Inex

edit

Triad

edit

Solar eclipses of 1921–1924

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The partial solar eclipse on July 31, 1924 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1921 to 1924
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 April 8, 1921
 
Annular
0.8869 123 October 1, 1921
 
Total
−0.9383
128 March 28, 1922
 
Annular
0.1711 133 September 21, 1922
 
Total
−0.213
138 March 17, 1923
 
Annular
−0.5438 143 September 10, 1923
 
Total
0.5149
148 March 5, 1924
 
Partial
−1.2232 153 August 30, 1924
 
Partial
1.3123

Saros 143

edit

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]

Series members 12–33 occur between 1801 and 2200:
12 13 14
 
July 6, 1815
 
July 17, 1833
 
July 28, 1851
15 16 17
 
August 7, 1869
 
August 19, 1887
 
August 30, 1905
18 19 20
 
September 10, 1923
 
September 21, 1941
 
October 2, 1959
21 22 23
 
October 12, 1977
 
October 24, 1995
 
November 3, 2013
24 25 26
 
November 14, 2031
 
November 25, 2049
 
December 6, 2067
27 28 29
 
December 16, 2085
 
December 29, 2103
 
January 8, 2122
30 31 32
 
January 20, 2140
 
January 30, 2158
 
February 10, 2176
33
 
February 21, 2194

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3 November 21–22 September 8–10 June 28–29 April 16–18
109 111 113 115 117
 
February 3, 1859
 
November 21, 1862
 
June 28, 1870
 
April 16, 1874
119 121 123 125 127
 
February 2, 1878
 
November 21, 1881
 
September 8, 1885
 
June 28, 1889
 
April 16, 1893
129 131 133 135 137
 
February 1, 1897
 
November 22, 1900
 
September 9, 1904
 
June 28, 1908
 
April 17, 1912
139 141 143 145 147
 
February 3, 1916
 
November 22, 1919
 
September 10, 1923
 
June 29, 1927
 
April 18, 1931
149 151 153 155
 
February 3, 1935
 
November 21, 1938
 
September 10, 1942
 
June 29, 1946

Notes

edit
  1. ^ a b c "SUN'S FROLIC PRIVATE". The Los Angeles Times. Los Angeles, California. 1923-09-11. p. 2. Retrieved 2023-10-15 – via Newspapers.com.
  2. ^ "Moon's welcome shadow falls across face of September sun". Bakersfield Morning Echo. Bakersfield, California. 1923-09-11. p. 1. Retrieved 2023-10-15 – via Newspapers.com.
  3. ^ "Sun in Eclipse, Seen on Academy Roof, Looks Like Nicked Cheese". Times Union. Brooklyn, New York City. 1923-09-11. p. 3. Retrieved 2023-10-15 – via Newspapers.com.
  4. ^ "1923 Solar Eclipse Expedition". Photographic Archive. University of Chicago. Archived from the original on 20 October 2020.
  5. ^ Miller, John Anthony; Marriott, Ross Walter (1925). "Observations of the total solar eclipse of September 10, 1923". Archived from the original on 28 August 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

References

edit